

NOKOV

Motion Capture System

Applications in Robotics and UAV

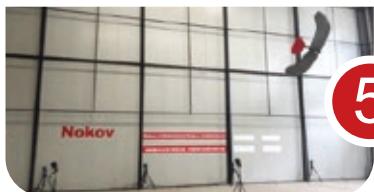
NOKOV Optical Motion Capture System

1

Sub-millimeter, low-latency 6DoF positional data

2

Creation of multiple rigid bodies with one-click

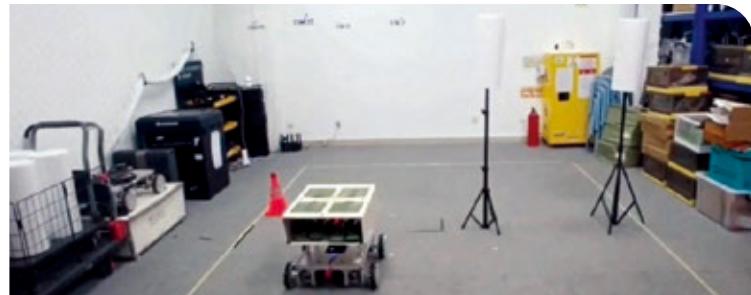

3

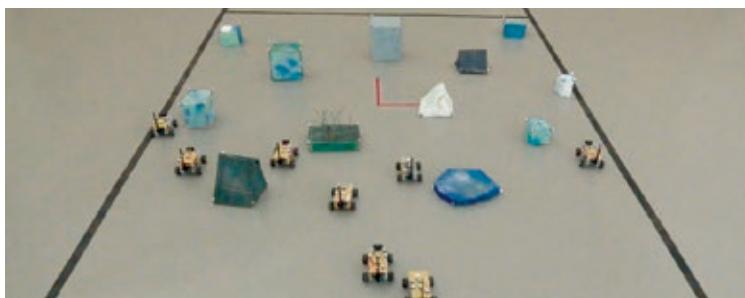
Multimodal integration with synchronized access to various biomechanical devices

4

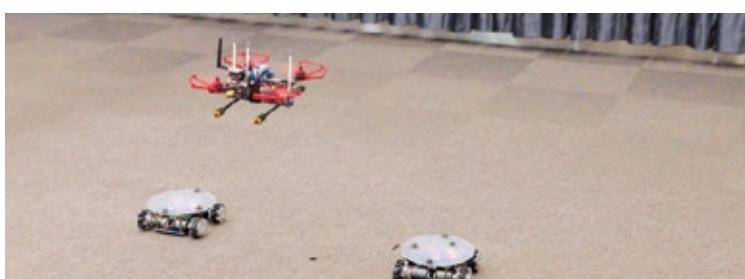
Integration of complex scenes

5


Suitable for large-scale, underwater, and outdoor environments


Formation and Collaborative Control of Robot Clusters

Zhejiang University
Passive wheeled TABV trajectory planning and control


Beihang University
Distributed control and formation of heterogeneous robot clusters

Institute of Automation, Chinese Academy of Sciences
Autonomous obstacle navigation by unmanned vehicle clusters

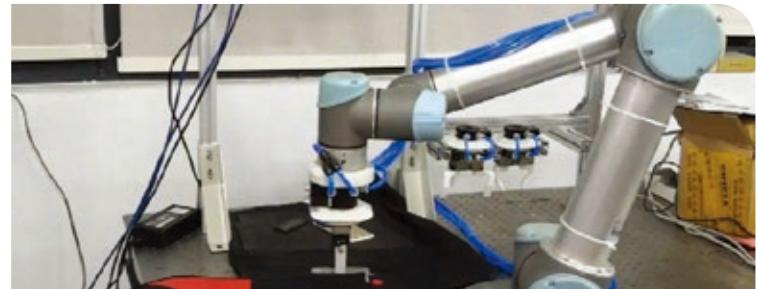
Beijing Institute of Technology
Collaborative control among multiple agents

Beijing Institute of Technology
Experimental platform for networked collaborative control of multiple agents

Northwestern Polytechnical University
Control of swarm robotics clusters

Application Scenarios and User Cases

Mobile Robots



Robotic Arms

Osaka University

Teaching and learning with collaborative robotic arms

Harbin Institute of Technology, Shenzhen

Assembly robot learning for component assembly

The Hong Kong Polytechnic University

Human-robot collaborative manufacturing



Sichuan University

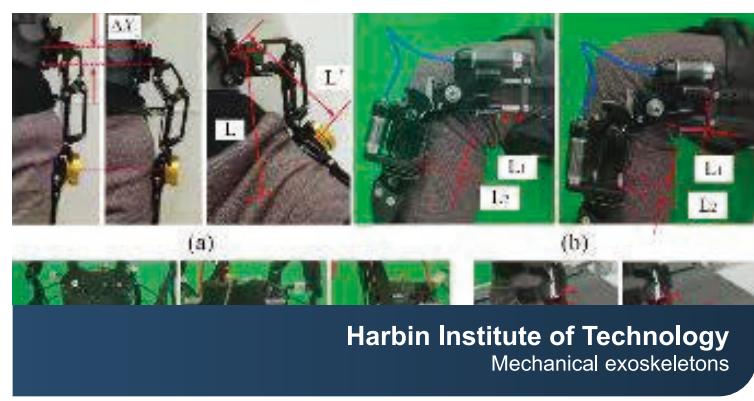
End-effector positioning of robotic arms

Pose Detection

Beihang University

Pose detection using satellite vision technology

RA-L & ICRA 2024


Tsinghua University

Enhancing Generalizable 6D Pose Tracking

Application Scenarios and User Cases

Exoskeleton and Rehabilitation Robotics

Bionic Robots

Shanghai Jiao Tong University
Hexapod robots

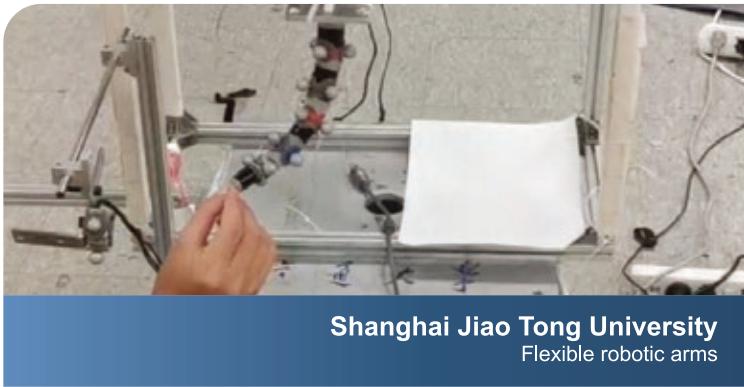
Shandong University
Quadruped robots

Harbin Institute of Technology, Shenzhen
Large-space flapping-wing robots

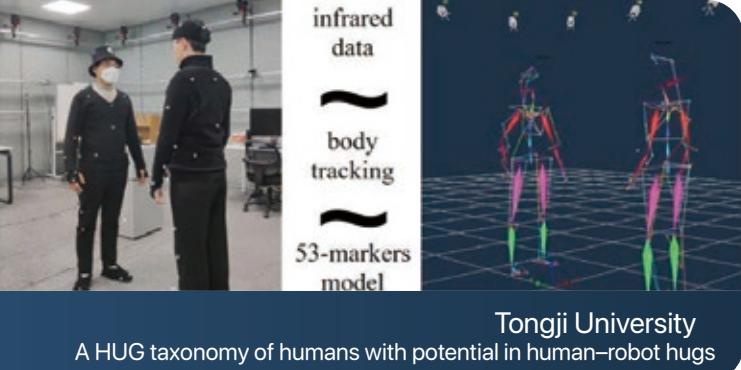
Shenzhen University
Robotic dolphins

Maritime and Underwater Applications

Harbin Institute of Technology, Shenzhen
Underwater robotic positioning



Tianjin Research Institute for Water Transport Engineering
Tunnel motion and deformation measurement



Application Scenarios and User Cases

Soft Robots

Humanoid Robots

Intelligent Agent Dashboard

- 1 Bind rigid bodies
- 2 Bind devices
- 3 Select device type
- 4 Device battery level
- 5 Pitch and roll angles
- 6 Acceleration
- 7 Speed
- 8 Height
- 9 Climb rate
- 10 Yaw angle
- 11 Speed
- 12 Pitch and roll angles
- 13 Yaw angle

- leaf Supports binding of rigid bodies
- leaf Graphical representation of real-time data
- leaf Provides synchronized reference video

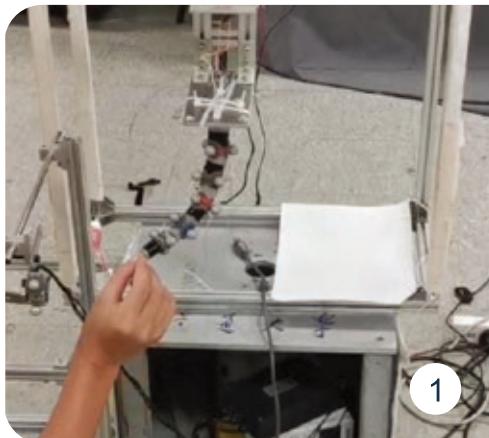
Enhanced Data Transfer

SDK
VRPN

C++

Python

Matlab


Simulink

LabView

Raspberry Pi

Flexible Body Capture

- Support for custom models
- Model training capability
- Compatibility with diverse biomechanical devices
- Minimize data post-processing

1 Multi-segment flexible robotic arms

2 Soft robotics

3 Quadrupeds and soft-bodied creatures

4 Flexible bodies like ropes

Enhanced Data Transfer

ROS / ROS2

Linux

Windows

Mac

Android

Crazyflie

PX4

Multimodal Data Integration

- Compatibility with diverse biomechanical devices
- Achieve data integration and synchronized acquisition
- Independent control of varied data sources

MULTIPLE OUTPUT FORMATS

FORCE PLATE
BERTEC
KUNWEI
坤维科技

KISTLER
AMTI
FORCE AND MOTION

SRI-
宇立仪器

EMG
cometa
DELSYS

智芸微

NORAXON
WISEWOW 润谊泰益

EEG
neuracle 博睿康

COMPMEDICS NeuroScan
REFERENCE CAMERA
BASLER
HIKVISION
DAHENG IMAGING 大恒图像

FLIR
EYE TRACKERS
tobii
TINVENSUN 七鑫易维

INSTRUMENTED TREADMILLS
BERTEC
AMTI
FORCE AND MOTION

hip/cosmos
SOFTWARE
Visual3D
BoB Biomechanics

ANY BODY
TECHNOLOGY

CATIA
DELMIA
Mokka
Motion kinematic & kinetic analyzer

OpenSim

PLANTAR PRESSURE MEASUREMENT
MedTrack
SENSOR medica
P&G green LAB LTD

Offices and Distributors

Beijing

Shanghai

Japan

Korea

France

Wuhan

Shenzhen

Spain

Thailand

Russia

India

After-Sales Training

Regular online and onsite training sessions

NOKOV's Service Edge

7·24

24/7 localized
technical support

DESIGN

Customized solutions
for complex scenarios

Accessory
procurement

Installation and
operation guides

Academic paper
repository access

MARS Series Motion Capture Cameras

Scientifically engineered for core motion capture performance

Model	P/N	Pixels MP	Resolution	Frame Rate FPS	Latency ms	3D Accuracy mm	Max Distance m	FOV
MARS 1.3H	Mars 1.3H	1.3	1280×1024	240	4.0	±0.2	11	56°×46°
	Mars 1.3HW	1.3	1280×1024	240	4.0	±0.3	9	95°×74°
MARS 2H	Mars 2H	2.2	2048×1088	380	2.4	±0.15	21	70°×40°
	Mars 2HW	2.2	2048×1088	380	2.4	±0.25	15	104°×55°
MARS 4H	Mars 4H	4	2048×2048	180	5.2	±0.1	32	52°×52°
	Mars 4HW	4	2048×2048	180	5.2	±0.25	20	90°×90°
MARS 9H	Mars 9H	9	4250×2160	300	3.0	±0.05	28	68°×37°
MARS 14H	Mars 14H	14	4608×3072	670	2.0	±0.05	27	68°×45°
MARS 18H	Mars 18H	18	4508×4096	139	5.0	±0.04	28	52°×47°
	Mars 18HW	18	4508×4096	139	5.0	±0.15	18	90°×82°
MARS 26H	Mars 26H	26	5120×5120	150	4.0	±0.03	30	56°×56°
	Mars 26HW	26	5120×5120	150	4.0	±0.1	20	105°×105°

Underwater Cameras

Tested for 100m depth and versatile for use in all aquatic environments

Model	P/N	Pixels MP	Resolution	Frame Rate FPS	Latency ms	3D Accuracy mm	Max Distance m	FOV	Max Deep m
MARS 1.3H UW	UW-100	1.3	1280×1024	240	4.0	±0.3	6	95°×74°	100
MARS 4H UW	UW-6-50	4	2048×2048	180	5.2	±0.30	8	90°×90°	50
	UW-8-50	4	2048×2048	180	5.2	±0.25	10	74°×74°	50

NOKOV motion capture systems employed by most of China's top universities

NOKOV's Featured Clients

Tsinghua
University

Zhejiang
University

Shanghai
Jiao Tong University

Fudan
University

Southern University of
Science and Technology

Huawei

University of
Oxford

Osaka
University

Harbin Institute
of Technology

Nanjing University of
Aeronautics and Astronautics

Shenzhen
innoX

Tencent

Beihang
University

Xi'an Jiaotong
University

Beijing Institute
of Technology

Xidian University

Shenzhen
University

aMap

Huazhong University of
Science and Technology

South China University
of Technology

Northwestern
Polytechnical University

Nanjing
University

Tianjin
University

Alibaba

Tongji
University

University of Science
and Technology of China

Sun Yat-sen
University

The Hong Kong
Polytechnic University

Xiamen
University

DJI

Nankai
University

Southeast
University

National Institute of
Technology, Tiruchirapalli, India

Wuhan
University

Shandong
University

Daikin

Chinese Academy
of Sciences

China Academy of
Launch Vehicle Technology

China Electric Power
Research Institute

China Automotive Technology
and Research Center

Sichuan
University

The Chinese University
of Hong Kong

BEIJING NOKOV SCIENCE&TECHNOLOGY CO., LTD

🌐 en.nokov.com

📍 Beijing (Headquarter)

📍 Shanghai Subsidiary

📍 WuHan Branch

📍 Shenzhen Branch

✉ info@nokov.cn

📞 +86-10-64922321

Room 820,China Minmetals Tower, Chaoyang District, Beijing

Room B201,Shangpinduhui,No.268 Tongxie Road, Changning District, Shanghai

#B3-601,Wuda Airlines Phase 2,Donghu High-tech Economic Development, Wuhan,Hubei

A2102,Cloud Technology Building, Nanshan District, Shenzhen