

Motion Capture System

Applications in Robotics and UAV

NUKOV Optical Motion Capture Systen

Sub-millimeter, low-latency 6DoF positional data

Creation of multiple rigid bodies with one-click

Multimodal integration with synchronized access to various biomechanical devices

Integration of complex scenes

Suitable for large-scale, underwater, and outdoor environments

Formation and Collaborative Control of Robot Clusters

Passive wheeled TABV trajectory planning and control FAST Lab, Zhejiang University

Distributed control and formation

Beihang University



Autonomous obstacle navigation by unmanned vehicle clusters
Institute of Automation, Chinese Academy of Sciences

Collaborative control among multiple agents

Beijing Institute of Technology

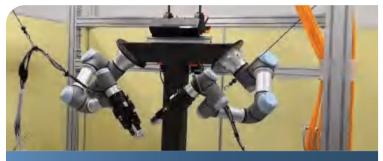
Networked collaborative control of multiple agents

Beijing Institute of Technology

Application Scenarios and User Cases

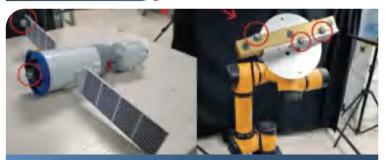
Mobile Robots

China Automotive Technology and Research Center



Robotic Arms

Teaching and learning with collaborative robotic arms
Osaka University


Assembly robot learning for component assembly
Harbin Institute of Technology, Shenzhen

Human-robot collaborative manufacturing
The Hong Kong Polytechnic University

Pose Detection

Pose detection using satellite vision technology
Beihang University

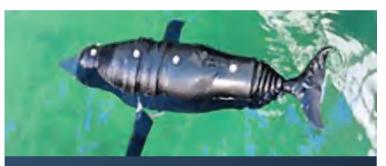
Enhancing generalizable 6D pose tracking Tsinghua University

Application Scenarios and User Cases

Exoskeleton and Rehabilitation Robotics

Rehabilitation robotsGwangju Institute of Science and Technology, Korea

Bionic Robots


Hexapod robots
Shanghai Jiao Tong University

Quadruped robots
Shandong University

Large-space flapping-wing robots
Harbin Institute of Technology, Shenzhen

Robotic dolphins
Shenzhen University

Maritime and Underwater Applications

Application Scenarios and User Cases

Soft Robots

Flexible robotic arms Shanghai Jiao Tong University

Inspection Robots

Intelligent Agent Dashboard

- 1 Bind rigid bodies
- 2 Bind devices
- 3 Select device type
- 4 Device battery level
- 5 Pitch and roll angles
- 6 Acceleration
- Speed
- 8 Height
- Olimb rate
- 10 Yaw angle
- 11 Speed
- Pitch and roll angles
- 13 Yaw angle

- Supports binding of rigid bodies
- Graphical representation of real-time data

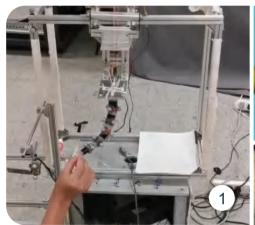
VRPN

Provides synchronized reference video

Enhanced Data Transfer

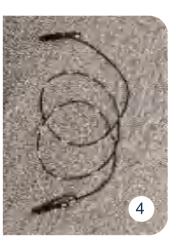
SDK

Python


Matlab

LabView

Raspberry Pi


Flexible Body Capture

- Support for custom models
- Model training capability
- Compatibility with diverse biomechanical devices
- Minimize data post-processing

- 1 Mu
 - Multi-segment flexible robotic arms
- 2 Soft robotics
- 3 Quadrupeds and soft-bodied creatures
- 4 Flexible bodies like ropes

Enhanced Data Transfer

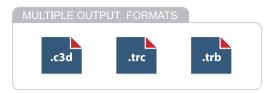
Linux

Windows

Mac

Android

Crazyflie


PX4

Multimodal Data Integration

- Compatibility with diverse biomechanical devices
- Achieve data integration and synchronized acquisition
- Independent control of varied data sources

Service Excellence

Offices and Distributors

Beijing

Shanghai

Japan

Korea

France

Wuhan

Shenzhen

Spain

Thailand

Russia

India

After-Sales Training

Regular online and onsite training sessions

NວKOV 's Service Edge

24/7 localized technical support

Customized solutions for complex scenarios

Accessory procurement

Installation and operation guides

Academic paper repository access

MARS Series Motion Capture Cameras

Scientifically engineered for core motion capture performance

Model	P/N	Pixels MP	Resolution	Frame Rate FPS	Latency ms	3D Accuracy mm	Max Distance m	FOV
MADCION	Mars 1.3H	1.3	1280×1024	240	4.0	±0.2	11	56°×46°
MARS 1.3H	Mars 1.3HW	1.3	1280×1024	240	4.0	±0.3	6	95°×74°
MARS 2H	Mars 2H	2.2	2048×1088	380	2.4	±0.15	21	70°×40°
	Mars 2HW	2.2	2048×1088	380	2.4	±0.25	15	104°×55°
MADEM	Mars 4H	4	2048×2048	180	5.2	±0.1	32	52°×52°
MARS 4H	Mars 4HW	4	2048×2048	180	5.2	±0.25	20	90°×90°
MARS 9H	Mars 9H	9	4250×2160	300	3.0	±0.05	28	68°×37°
MARS 18H	Mars 18H	18	4508×4096	139	5.0	±0.04	28	52°×47°
	Mars 18HW	18	4508×4096	139	5.0	±0.15	18	90°×82°
MARS 26H	Mars 26H	26	5120×5120	150	4.0	±0.03	30	56°×56°
	Mars 26HW	26	5120×5120	150	4.0	±0.1	20	105°×105°

Underwater Cameras

Tested for 100m depth and versatile for use in all aquatic environments

								ALL P	
Model	P/N	Pixels MP	Resolution	Frame Rate FPS	Latency ms	3D Accuracy mm	Max Distance	e FOV	Max Deep m
MARS 1.3H UW	UW-100	1.3	1280×1024	240	4.0	±0.3	6	95°×74° (Air) 64°×50° (Water)	100
MARS 4H UW	UW-100 UW-50	4 4	2048×2048 2048×2048	180 180	5.2 5.2	±0.15 ±0.15	17 17 3	52°×52°(Air) 7.55°×37.55°(Water)	100 50

NOKOV motion capture systems employed by most of China's top universities

NOKOV's Featured Clients

Tsinghua

University of

Huazhong University of Science and Technology

of Sciences

South China University of Technology

University of Science

and Technology of China

Jiao Tong University

of Technology

Beijing Institute of Technology

Polytechnical University

Sun Yat-sen

National Institute of Technology, Tiruchirapalli, India

The Hong Kong

Nanjing University of

Aeronautics and Astronautics

Xidian University

China Electric Power China Automotive Technology

Southern University of

Science and Technology

Tencent 腾讯

The Chinese University of Hong Kong

China Academy of Launch Vehicle Technology

Research Institute

and Research Center

- en.nokov.com
- ☑ info@nokov.cn
- **** +86-10-64922321

- Beijing (Headquarter) Room 820, China Minmetals Tower, Chaoyang District, Beijing
- Shanghai Subsidiary
- Room B201, Shangpinduhui, No. 268 Tongxie Road, Changning District, Shanghai

#B3-601, Wuda Airlines Phase 2, Donghu High-tech Economic Development, Wuhan, Hubei

- WuHan Branch
- A2102, Cloud Technology Building, Nanshan District, Shenzhen
- Shenzhen Branch